Telegram Group & Telegram Channel
آنچه بنجیو در خشت خام می‌بیند

یاشوا بنجیو که (انصافا) یکی از خدایگان هوش مصنوعی و دیپ لرنینگ است، از یکی دو سال پیش به تدریج در تاک‌های مختلف (مثلا اینجا و اینجا و اینجا و اینجا) ایده‌های خود برای پیشرفت‌ آینده هوش مصنوعی را شرح داده است. ایده‌های او بر بناکردن inductive biasهای جدیدی (به طور خیلی خلاصه و مفید inductive bias همان فرضیاتی که یک الگوریتم یادگیری قبل از حل مساله در مورد آن در نظر می‌گیرد و راه حلش روی آن فرض بنا شده است، برای مثال وقتی ما فرض می‌کنیم که معنای یک تیکه از تصویر می‌تواند از تیکه‌های مجاورش دریافت شود این فرض ما منجر به بناشدن شبکه‌های cnnای می‌شود) برای دیپ لرنینگ حول کلیدواژه مهم out of distribution generalization (تا الان بدین شکل بوده که مدل ما یک توزیع از داده‌های آموزشی در می‌آورده و نهایتا با کمی تغییر دنبال این توزیع در داده‌های تست بوده است. اما شیخ ما اعتقاد دارد بایستی از این به بعد تغییرات گسترده در داده‌های تست نسبت به توزیع داده‌های آموزش را هم بتواند تحمل کند. مثلا باید یادگرفتن را یادبگیرد تا اگر توزیع محیطش تغییری هم کرد بتواند خودش را با آن وفق دهد!) بنا شده است.
به طور مختصر و مفید؛ پیر ما معتقد است که تسک‌هایی را که مغز انسان انجام می‌دهد می‌توان به دسته سیستم ۱ و سیستم ۲ تقسیم ‌بندی کرد. تسک‌های سیستم ۱ مسائلی هستند که به صورت ناخودآگاه و البته سریع و بدون نیاز به تفکر قابل انجام توسط مغز هستند مثلا تشخیص خر از پنگوئن، تشخیص ناسزا از غیرناسزا و ... ، حال ان که تسک‌های سیستم ۲ بایستی با توجه و برنامه‌ریزی و البته آگاهانه انجام شوند مثلا رانندگی کردن.
بنجیو می‌گوید که توانایی فعلی دیپ لرنینگ در انجام دادن تسک‌های سیستم ۱ است و در سیستم ۲ توفیقی هنوز ندارد. در ادامه بنجیو پیشنهاد می‌دهد که آینده هوش مصنوعی درگیر با انجام تسک‌های سیستم ۲ و همچنین همان کلیدواژه out of distribution generalization خواهد بود.

بر اساس همین ایده اولیه، بنجیو تعدادی ایده برای الهام‌گیری و شکستن بن‌بست فعلی پیشرفت دیپ لرنینگ پیشنهاد می‌کند که از آن‌ها می‌توان به بررسی مسائل multi agent، خلق شبکه‌های عصبی با ویژگی ماژولاریزیشن نظیر RIMها، دیدن مسائل از زاویه گراف‌های علی (causal) متغیر‌ها، متالرنینگ و ... اشاره کرد.

لینک مقاله‌‌اش:

https://arxiv.org/pdf/2011.15091.pdf

پ.ن. لطفا کانال را به کسایی که هوش مصنوعی دوست دارند، معرفی کنید! ممنون.

#paper
#read

@nlp_stuff



tg-me.com/nlp_stuff/127
Create:
Last Update:

آنچه بنجیو در خشت خام می‌بیند

یاشوا بنجیو که (انصافا) یکی از خدایگان هوش مصنوعی و دیپ لرنینگ است، از یکی دو سال پیش به تدریج در تاک‌های مختلف (مثلا اینجا و اینجا و اینجا و اینجا) ایده‌های خود برای پیشرفت‌ آینده هوش مصنوعی را شرح داده است. ایده‌های او بر بناکردن inductive biasهای جدیدی (به طور خیلی خلاصه و مفید inductive bias همان فرضیاتی که یک الگوریتم یادگیری قبل از حل مساله در مورد آن در نظر می‌گیرد و راه حلش روی آن فرض بنا شده است، برای مثال وقتی ما فرض می‌کنیم که معنای یک تیکه از تصویر می‌تواند از تیکه‌های مجاورش دریافت شود این فرض ما منجر به بناشدن شبکه‌های cnnای می‌شود) برای دیپ لرنینگ حول کلیدواژه مهم out of distribution generalization (تا الان بدین شکل بوده که مدل ما یک توزیع از داده‌های آموزشی در می‌آورده و نهایتا با کمی تغییر دنبال این توزیع در داده‌های تست بوده است. اما شیخ ما اعتقاد دارد بایستی از این به بعد تغییرات گسترده در داده‌های تست نسبت به توزیع داده‌های آموزش را هم بتواند تحمل کند. مثلا باید یادگرفتن را یادبگیرد تا اگر توزیع محیطش تغییری هم کرد بتواند خودش را با آن وفق دهد!) بنا شده است.
به طور مختصر و مفید؛ پیر ما معتقد است که تسک‌هایی را که مغز انسان انجام می‌دهد می‌توان به دسته سیستم ۱ و سیستم ۲ تقسیم ‌بندی کرد. تسک‌های سیستم ۱ مسائلی هستند که به صورت ناخودآگاه و البته سریع و بدون نیاز به تفکر قابل انجام توسط مغز هستند مثلا تشخیص خر از پنگوئن، تشخیص ناسزا از غیرناسزا و ... ، حال ان که تسک‌های سیستم ۲ بایستی با توجه و برنامه‌ریزی و البته آگاهانه انجام شوند مثلا رانندگی کردن.
بنجیو می‌گوید که توانایی فعلی دیپ لرنینگ در انجام دادن تسک‌های سیستم ۱ است و در سیستم ۲ توفیقی هنوز ندارد. در ادامه بنجیو پیشنهاد می‌دهد که آینده هوش مصنوعی درگیر با انجام تسک‌های سیستم ۲ و همچنین همان کلیدواژه out of distribution generalization خواهد بود.

بر اساس همین ایده اولیه، بنجیو تعدادی ایده برای الهام‌گیری و شکستن بن‌بست فعلی پیشرفت دیپ لرنینگ پیشنهاد می‌کند که از آن‌ها می‌توان به بررسی مسائل multi agent، خلق شبکه‌های عصبی با ویژگی ماژولاریزیشن نظیر RIMها، دیدن مسائل از زاویه گراف‌های علی (causal) متغیر‌ها، متالرنینگ و ... اشاره کرد.

لینک مقاله‌‌اش:

https://arxiv.org/pdf/2011.15091.pdf

پ.ن. لطفا کانال را به کسایی که هوش مصنوعی دوست دارند، معرفی کنید! ممنون.

#paper
#read

@nlp_stuff

BY NLP stuff




Share with your friend now:
tg-me.com/nlp_stuff/127

View MORE
Open in Telegram


NLP stuff Telegram | DID YOU KNOW?

Date: |

How to Invest in Bitcoin?

Like a stock, you can buy and hold Bitcoin as an investment. You can even now do so in special retirement accounts called Bitcoin IRAs. No matter where you choose to hold your Bitcoin, people’s philosophies on how to invest it vary: Some buy and hold long term, some buy and aim to sell after a price rally, and others bet on its price decreasing. Bitcoin’s price over time has experienced big price swings, going as low as $5,165 and as high as $28,990 in 2020 alone. “I think in some places, people might be using Bitcoin to pay for things, but the truth is that it’s an asset that looks like it’s going to be increasing in value relatively quickly for some time,” Marquez says. “So why would you sell something that’s going to be worth so much more next year than it is today? The majority of people that hold it are long-term investors.”

NLP stuff from id


Telegram NLP stuff
FROM USA